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Abstract

There is commonly a linear relationship between the lengths of rock fractures and their displacements, but for many fracture
populations there is a very large scatter in the data. In the lava ¯ows of the rift zone in Iceland, the displacements on a fracture
or fault of a given length may vary by a factor of 2±10. Similar scatter is obtained for the aperture (width)/length ratios of

several hundred mineral-®lled veins in a major fault zone. I propose that the displacement on a fracture depends mostly on the
smaller of its dip and strike dimensions, referred to as the controlling dimension. Thus, in a horizontal outcrop, fractures with
the same strike dimension (outcrop length) can have widely di�erent displacements depending on whether the displacements of

individual fractures are controlled by strike or dip dimensions. During growth of a fracture, its controlling dimension may
alternate between the dip dimension and the strike dimension. The volumetric rate of ¯ow of ¯uid through a rock fracture with
smooth, parallel walls depends on the cube of the fracture aperture. This cubic law implies that when the aperture of a fracture
of a given length in a single set or population can vary by a factor of 2±10, the corresponding volumetric rate of ¯uid ¯ow

through that fracture can vary by a factor of 8±1000. A single, wide fracture in a set of as many as several hundred fractures
may thus largely dominate the ¯uid transport through that set. Fracture aperture depends not only on the associated stress ®eld,
but also on its controlling dimension. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Fracture populations formed in a single tectonic
regime with essentially uniform mechanical host-rock
properties (Figs. 1 and 2) commonly show an approxi-
mately linear relationship between surface length and
maximum displacement (Cowie and Scholz, 1992;
Gudmundsson, 1992; Dawers et al., 1993; Cartwright
et al., 1995; Clark and Cox, 1996; Marrett, 1996;
Schlische et al., 1996; Schultz, 1997). There is, how-
ever, normally a very large scatter in the data (Cowie
et al., 1996); not only when di�erent sets are grouped
together, but also when individual sets are considered
(Figs. 3 and 4). Part of this scatter is, of course, at-
tributable to the `noise' that is invariably associated
with empirical data.

For rock fractures, this noise is partly due to in-

accurate measurements of displacement, and partly
due to the concept of `fracture length' being based
on an operational de®nition which is neither very
precise nor necessarily the same for all workers.
For example, Gudmundsson (1987a,b) de®nes frac-
ture length for ®ssure swarms in the rift zone of
Iceland as the distance that a fracture can be traced
on aerial photographs at the scale of around
1:30,000. All small fractures, whether or not they
are associated with large fractures, are then
regarded as separate fractures. The length distri-
bution of a fracture population measured in this
way is clearly subject to a truncation bias, because
of inability to recognise fractures shorter than a
certain threshold length. Other workers use di�erent
ways to determine fracture length; some of these
are discussed by Odling (1997). Also, closely spaced,
collinear cracks may act mechanically as single frac-
tures (e.g. Sneddon and Lowengrub, 1969), and
their interaction a�ects the measured length/width
(aperture) ratios (Pollard et al., 1982; Gudmunds-
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Fig. 1. Aerial view of some of the 144 tension fractures (lower half of the photograph) measured and plotted in Fig. 3. View northeast, the frac-

tures are located in an early Holocene pahoehoe (basaltic) lava ¯ow of the Theistareykir Fissure Swarm in the rift zone of North Iceland (cf.

Gudmundsson, 1995, 1999). All the measured tension fractures occur in the region to the west of the main normal fault (maximum vertical dis-

placement 24 m to the west).

Fig. 2. Western part of the Thingvellir Fissure Swarm in Southwest Iceland (cf. Gudmundsson, 1987b) where part of the data measured and

plotted in Fig. 4 were obtained. The ®ssure swarm is located in an early Holocene pahoehoe (basaltic) lava ¯ow. View southwest along part of

the western boundary fault, Almannagja. The maximum vertical displacement on the fault occurs near the large house (a hotel) close to the lake

and is around 40 m, whereas the width (opening) is mostly between 40 m and 60 m in the part of the fault used as channel by the river. There

are pure extension (tension) fractures to the left of the main fault, many a few hundred metres long, some of which are ®lled with groundwater;

the partly visible fracture at the left margin of the photograph is the one in Fig. 9. Houses and cars inside the graben provide a scale.
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son, 1987a; Vermilye and Scholz, 1995; Willemse et
al., 1996). In this paper the de®nition of fracture

length follows that given by Gudmundsson

(1987a,b).

Commonly, the scatter for a single fracture data set,
measured by a single worker in a single tectonic

regime, is so large that it can hardly be accounted for

as noise. For example, in the data sets in Figs. 3 and 4

Fig. 3. Length±width (opening) relationship for 144 extension (mode I) fractures in a pahoehoe Holocene lava ¯ow of the Theistareykir Fissure

Swarm in the rift zone in North Iceland (cf. Fig. 1). All the fractures are measured within a single lava ¯ow in an area of less than 0.1 km2.

There is a large scatter in the data: for some fractures of the same length, the width varies by a factor as great as 5±10. The most common vari-

ation, however, is by a factor of 2±3.

Fig. 4. Length±vertical displacement (throw) relationship for 26 large normal faults in the rift zone of Southwest Iceland (data from Gudmunds-

son, 1992). All the faults are from early Holocene pahoehoe lava ¯ows with essentially the same mechanical properties (cf. Fig. 2). There is a

considerable scatter in the data; for faults with lengths of roughly 6 km the throw can vary from about 8 m to 16 m, a factor of 2.
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the displacements for a fracture of a given length vary
by a factor of 2±10. Such a large scatter is likely to be
signi®cant and related to the mechanics of fracture in-
itiation and development.

The way by which the width or aperture of a frac-
ture changes with its dimensions has particularly im-
portant implications for ¯uid ¯ow through the
fracture. This follows because the volumetric ¯ow rate
through an isolated fracture with smooth, parallel frac-
ture walls is proportional to the cube of the aperture
of the fracture. However, this relationship does not
hold for fractures with rough walls, or where the frac-
ture aperture varies much along the trace of the frac-
ture, in which case channelling of the ¯uid ¯ow along
the widest parts of the fracture may be important
(Tsang and Neretnieks, 1998).

In the geological literature, fractures that reach the
surface of the body within which they occur, or meet
with other fractures or discontinuities, are referred to
as restricted, whereas interior cracks are referred to as
non-restricted (Nicol et al., 1996). In networks, where
the cracks are commonly restricted and their control-
ling dimensions subject to temporal and spatial
changes during the evolution of the network, the re-
lationships between aperture and length are di�erent
from those of isolated, non-restricted cracks (Lee and
Farmer, 1993; Odling, 1997). For understanding ¯uid
¯ow in rock fractures, the crack dimensions and their
e�ects on fracture displacements or openings must be
considered.

One objective of this paper is to demonstrate the
e�ect that controlling dimensions of fractures have on
their displacements and, thereby, on the length±displa-
cement relations and scatter for fracture sets. The
paper presents some general equations for calculating
fracture displacements when the boundary conditions,
the elastic properties of the host rock, and the control-
ling dimensions for the fractures are known. A second
objective is to discuss the implications of fracture
dimensions and displacements or apertures for ¯uid
¯ow in rock fractures.

2. Controlling dimensions

In fracture mechanics, there are three basic types of
displacements of the crack surfaces (e.g. Broberg,
1999). In mode I displacement, referred to as opening
or tensile mode, the crack surfaces move directly
apart. In mode II displacement, referred to as sliding
or in-plane shear mode, the fracture surfaces slide over
one another in a direction perpendicular to the leading
edge (tip) of the crack. In mode III displacement,
referred to as tearing or anti-plane shear mode, the
crack surfaces move relative to one another in a direc-

tion that is parallel to the leading edge (tip) of the
crack.

For modelling an extension fracture, such as a pure
tension fracture, or a hydrofracture such as a mineral
vein or a dyke, the appropriate model is a mode I
crack. For a large strike-slip fault, the appropriate
model is normally a mode III crack. For a dip-slip
fault, however, either a mode II crack or a mode III
crack may be an appropriate model, depending on the
controlling dimension of the fault. Furthermore, the
controlling dimension depends on the shape of the
fracture.

There are three basic ideal shapes that elliptical frac-
tures can have (Fig. 5). First, a through-the-thickness
crack (a through crack) goes right through the elastic
body which contains the crack. Second, a thumbnail
crack (a part-through crack) goes only partly into the
elastic body from its surface. Third, an elliptical in-
terior crack (of which the circular `penny-shaped'
crack is a special case) is located in the interior of the
elastic body, which is then regarded as in®nite. For
two-dimensional cracks, one dimension, say the strike
dimension of a large strike-slip fault, is e�ectively
taken as in®nite, in which case the other dimension
(the dip in this case) must control the slip. To demon-
strate that the smaller dimension is normally the one
that largely or wholly controls fracture slip, we con-
sider a three-dimensional elliptical crack (Fig. 5).

The problem of an elliptical crack in an in®nite elas-
tic solid subject to mode I (opening mode) loading was
solved by Green and Sneddon (1950) and for arbitrary
(mixed-mode) loading by Kassir and Sih (1966). A
summary and a further discussion of these solutions is
given by Sih and Liebowitz (1968) and by Kassir and
Sih (1975). The controlling dimension of a three-
dimensional crack subject to mode I loading can be
represented by easily understood analytical formulas
and is examined here.

Consider an elliptical crack with a tip-line described
by the formula for an ellipse with the origin at the
centre of the co-ordinate system and the major axis,
2a, coinciding with the x-axis (and the minor axis, 2b,
coinciding with the y-axis), namely:

1ÿ x 2

a2
ÿ y2

b2
� 0 �1�

where arb>0 (Fig. 5). The eccentricity of the ellipse,
e, is de®ned by:

e �
�
1ÿ b2

a2

�1=2

�2�

where 0 < e < 1. The normal displacement, which is
half the aperture, DuI, of the elliptical crack, as a func-
tion of location on the crack surface, u=u(x,y,0), is
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given by:

u � ÿs�1ÿ n�b
GE�e�

�
1ÿ x 2

a2
ÿ y2

b2

�1=2

�3�

where ÿs is the tensile stress opening the crack (con-
sidered negative), n is Poisson's ratio of the host rock,
G its shear modulus, and E�e� is the complete elliptic
integral of the second kind, de®ned by:

E�e� �
�p=2
0

��������������������������
1ÿ e2sin2 y

p
d y: �4�

This integral cannot be evaluated by elementary
techniques for general values of e; standard mathemat-
ical tables, however, give E�e� for various values of e
(Beyer, 1976).

Consider ®rst a circular interior crack, a penny-
shaped crack, where, by de®nition, a=b. Then from
Eq. (2) we have e=0, and from Beyer (1976, p. 464),
E�0� � p=2 � 1:57: Using a=b, and the relations x 2 �
y2 � r2 (where r is the radial co-ordinate of a circle
with its centre at the origin) and G=E/[2(1+n )],
where E is Young's modulus, from Eq. (3) the normal
displacement u=u(r ) is:

u � ÿ4s�1ÿ n2�
pE

�b2 ÿ r2�1=2: �5�

This is the formula for a penny-shaped crack opened
under constant opening-mode loading ÿs (Sneddon
and Lowengrub, 1969, p. 139).

If one dimension, say the dip dimension, is much
larger than the other (Fig. 5), then a� b: In relation
to b then, in Eq. (2), a41 so that e41: Using
E(1)=1 and the above relation between shear modulus

and Young's modulus, from Eq. (3) we obtain:

u � ÿ2s�1ÿ n2�
E

�b2 ÿ y2�1=2: �6�

This is the plane-strain formula for a two-dimen-
sional elliptical through crack (a `tunnel crack', Fig. 5)
subject to constant opening-mode loading, ÿs (e.g.
Sneddon and Lowengrub, 1969, p. 29). If the true dip
dimension is short (but still assumed in®nite), a slightly
di�erent plane-stress formula is commonly used (Paris
and Sih, 1965; Tada et al., 1973). In Eq. (6), u depends
only on the smaller dimension, b, which is thus the
controlling dimension.

Commonly, the measured displacement of a fracture
is known, or assumed, to be its maximum normal dis-
placement, umax, which occurs at the centre of the
crack. Substituting x=y=0 in Eq. (3), with the above
relation between Young's modulus and shear modulus,
we get:

umax � ÿ2s�1ÿ n2�b
EE�e� �7�

which shows that the maximum displacement depends
primarily on the smaller dimension b. The only e�ect
of the larger dimension, a, is through the eccentricity,
e, and the value of E�e�: For example, if a=2b, we
obtain E�e� � 1:21, if a=3b, E�e� � 1:11, and if a=4b,
E�e� � 1:06, and less for greater a/b ratios. Thus, for
the aspect ratios of interest, E�e� is always close to
unity and the resulting displacement very similar to
that obtained in the centre of a through crack (Eq. (6)
with y = 0). These conclusions indicate that it is the
smaller dimension that has the greatest e�ect on the
displacement of an elliptical crack, particularly when

Fig. 5. In relation to the elastic body hosting the crack, ideal, elliptical cracks can have three basic shapes: (A) and (B) an interior crack, (C) a

through crack, and (D) a part-through crack. The circular interior crack (A) is a special case of the general, three-dimensional elliptical interior

crack (B) with a major axis 2a and a minor axis 2b. The through crack (C), here a long `tunnel crack', extends from one free surface (S) to

another (S) where its maximum opening displacement is Du: The part-through crack (D) extends from one free surface (S) partly into the elastic

body. The orientation of the co-ordinate system, hence the strike and dip of the cracks, are arbitrary. Interior cracks (A and B) are non-restricted

in their development; the other two shapes (C and D) are restricted.
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the a/b ratio is large, and may therefore be regarded as
its controlling dimension.

3. Fracture displacements and apertures

The way that the displacement, and slip or opening
in individual events, of a fracture depends on its con-
trolling dimension and shape is illustrated by the
equations below. In all these equations, E denotes
Young's modulus, n denotes Poisson's ratio, L denotes
the strike dimension of the fracture and R its dip
dimension. When the strike dimension is much greater
than the dip dimension, a plane-stress formulation
should be used. Conversely, when the dip dimension is
the greater one (Fig. 5), a plane-strain formulation

should be used (Paris and Sih, 1965; Tada et al.,
1973), as in Eqs. (5)±(7).

Consider an extension fracture that goes through the
elastic layer hosting it. This con®guration may apply,
for example, to a vertical extension fracture reaching
from the surface of a young pahoehoe basaltic lava
¯ow (Fig. 6) to a horizontal, open contact between the
¯ow units (Fig. 7). If a shallow ¯ow unit, or a group
of units, is largely decoupled from the underlying units
by a well-open contact (a discontinuity), the rock may
behave similarly to that of a solid plate with free sur-
faces at its bottom and top. The extension fracture can
then be modelled as a through-the-thickness mode I
crack (Fig. 5). From Eq. (7) it follows that if a > 2±3b,
we may use Eq. (6) to calculate approximately the dis-
placement in the centre of the crack. Thus if the strike
dimension L=2b is much smaller than the dip dimen-

Fig. 7. Cross-section showing the uppermost part of a Holocene

pahoehoe lava ¯ow in the rift zone of North Iceland (cf. Fig. 6).

View west, this cross-section is part of the footwall of a normal fault

with a displacement of around 20 m (the height of the wall). Most

¯ow units range in thickness between 1±3 m and develop regular sys-

tems of vertical columnar (cooling) joints. Many ¯ow units have

sharp, open contacts that, when subject to tectonic stresses, may be

essentially freely slipping near the surface.

Fig. 6. Small extension (tension) fracture initiating from columnar

(cooling) joints at the surface of a Holocene pahoehoe lava ¯ow in

that part of the rift zone of North Iceland shown in Fig. 1. The

length of the fracture is 75 cm, and its greatest opening is 5 cm. As

the fracture propagates down through the ¯ow units of the host rock

(Fig. 7), its geometry alternates between a part-through crack (when

its lower end is inside a ¯ow unit) and a through crack (when its

lower end is at an open, freely slipping contact). For unequal rates

of vertical and horizontal propagation, the fracture controlling

dimension alternates between the strike and dip dimensions.
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sion R=2a (Fig. 5), the associated aperture or opening
displacement DuI depends on the strike dimension.
With y=0, Eq. (6) then gives:

DuI � ÿ2s�1ÿ n2�L
E

: �8�

If, however, the extension fracture goes only partly
into the layer hosting it (Fig. 5) and its strike dimen-
sion is much greater than its dip dimension, say
L> 2±3R, the controlling dimension is the dip dimen-
sion R and a plane-stress mode I crack model gives the
following equation (Tada et al., 1973):

DuI � ÿ4sRV
E

�9�

the function V�RT �, where T is the total thickness of the
rock layer hosting the fracture, being de®ned (using
radians) as:

V

�
R

T

�
� 1:46� 3:42

�
1ÿ cos �pR=2T ���

cos �pR=2T ��2 : �10�

For faults, the driving shear stress Dt is the di�er-
ence between the remote applied shear stress, t, and
the residual frictional strength on the fault after sliding
(Nur, 1974; Rice, 1980). The residual frictional
strength is then considered equal to the coe�cient of
sliding friction multiplied by the normal stress, that is,
the term msn in the Modi®ed Gri�th Criterion (Jaeger
and Cook, 1969; Nur, 1974), and, denoting the host-
rock tensile strength by T0, we get:

t � 2T0 � msn: �11�

A large strike-slip fault is normally modelled as a
mode III crack (e.g. Pollard and Segall, 1987), where
the displacement DuIII is related to the dip dimension
R of the fault according to the equation:

DuIII � 4Dt�1� n�R
E

: �12�

For a dip-slip fault where the strike dimension L
controls the displacement, a mode III crack is the
appropriate model, thus:

DuIII � 2Dt�1� n�L
E

: �13�

Conversely, for a dip-slip fault where the dip dimen-
sion R controls the displacement, a mode II crack is
the appropriate model and is given by:

DuII � 4DtRV
E

: �14�

4. Extension fractures and normal faults

To see what e�ect di�erent controlling dimensions
can have on the resulting displacements, one must ®rst
consider what are the likely shapes of rock fractures.
Nicol et al. (1996) studied the dip dimensions vs. strike
dimensions of 40 main-shock slip-surfaces, as de®ned
by aftershock loci, for various types of faults associ-
ated with M4.2±6.8 events (Fig. 8). These results, as
well as studies of subsurface faults in mining areas
(Rippon, 1985; Nicol et al., 1996), suggest that for
moderate to large faults the controlling dimension can
be either the dip or (less commonly) the strike dimen-
sion. There is also a signi®cant di�erence in the result-
ing displacement depending on whether the fracture is
a through crack or part-through crack. This di�erence
in geometry is illustrated in Fig. 5, and the di�erences
in displacements follow from Eqs. (8)±(10).

Consider an extension fracture that is 200 m long
(Fig. 2) and 500 m deep. Assume that at its bottom
the fracture meets with a freely slipping horizontal dis-
continuity, such as a joint, an open contact (Fig. 7) or
a very soft sediment, so that the through-crack model
is appropriate. The static Young's modulus of the
uppermost few hundred metres of the rift zone in Ice-
land is about 5 GPa, its Poisson's ratio is 0.25, and
the in-situ tensile strength of the crust is around 4
MPa (Gudmundsson, 1988). Substituting these values
for the dimensions and elastic constants in Eq. (8),
and taking the tensile stress at fracture formation to

Fig. 8. Dip dimensions plotted against strike dimensions of 40 main-

shock slip-surfaces (data from Nicol et al. 1996). The geometries of

the main-shock surfaces are de®ned by the aftershock loci for normal

(squares), strike-slip (crosses), reverse (diamonds) and oblique-slip

(triangles) faults.
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be equal to the in situ tensile strength, the calculated
opening displacement is 0.3 m.

If the 200 m long fracture was much shallower, how-
ever, the relation between length and displacement
would be very di�erent. If the strike dimension is
again 200 m, but the dip dimension is 100 m, the ratio
of these dimensions, 2.0, is similar to the most com-
mon ratio found by Nicol et al. (1996). Let the frac-
ture be a part-through crack in a layer of thickness
500 m. Then the factor T in Eq. (10) is 500 m, whereas
the factor R is 100 m, and V�RT � gives a value of ap-
proximately 1.8. Substituting this value in Eq. (9), and
using the same elastic constants and tensile stress as
before, the calculated opening displacement is roughly
0.6 m; twice as large as in the previous case.

These results show that for the same length of exten-
sion fracture, in a single tectonic regime with the same

elastic constants and tensile stress, the resulting open-
ing displacement depends strongly on the controlling
dimension of the fracture and whether or not the frac-
ture is a through-going crack. For fractures of the
same length, a shallow fracture would have a wider
opening at the surface than a deep fracture. This indi-
cates that a large scatter in a plot of lengths of exten-
sion fractures against their widths (Fig. 3) may be
partly the result of di�erent fracture geometries and
controlling dimensions within the data set.

Consider now the e�ects of controlling dimensions
on the displacements and slips on normal faults. Many
large normal faults in the rift zone of Iceland are
around 6 km long (Gudmundsson, 1987a,b). For a
strike dimension of 6 km, and a ratio of 2.0 between
the strike dimension and the dip dimension (Nicol et
al., 1996), the dip dimension would be 3 km and,
therefore, the controlling dimension. For the upper-
most 3 km of the rift zone in Iceland, the static
Young's modulus is around 22 GPa and Poisson's
ratio around 0.25. The total thickness of the seismo-
genic crust in the rift zone of Iceland is commonly
around 12 km, in which case the R/T ratio in Eq. (10)
is 1/4 and the value of V�RT � about 2.0. Substituting
these values in Eq. (14), and using the average driving
stress of 3 MPa (Nur, 1974; Kasahara, 1981; Scholz,
1990), one obtains a displacement of just over 3 m.

A di�erent displacement would be obtained on the
above normal fault if it extended to the bottom of the
seismogenic layer at 12 km depth. In that case the
strike dimension of 6 km would be the controlling
dimension, and the average static Young's modulus of
the whole crust, 40±50 MPa (Gudmundsson, 1988),
should be used. Using a Poisson's ratio of 0.25 and a
driving stress of 3 MPa, from Eq. (13) one obtains a
displacement of around 1 m. Thus, depending on the
controlling dimension (here also a�ecting the value of
Young's modulus), the slip on a normal fault with the
same driving stress can easily vary by a factor of 3.

5. Fluid transport in extension fractures

Consider a ¯uid-®lled extension (mode I) fracture
(Fig. 9) with a strike dimension L smaller than its dip
dimension R. If the fracture is a through crack, it fol-
lows from Eq. (8) that its aperture or opening displace-
ment DuI is related to the overpressure Dp of the ¯uid
through the equation:

DuI � 2Dp�1ÿ n2�L
E

�15�

where, as before, E is Young's modulus of the rock
and n its Poisson's ratio. If, however, the ¯uid-®lled
extension fracture is a part-through crack and its strike

Fig. 9. Water-®lled extension fracture in the Holocene pahoehoe lava

¯ow of the Thingvellir Fissure Swarm in Southwest Iceland (Fig. 2).

Although ¯uid pressure may contribute to their formation, normal

faults and extension fractures in rift zones are primarily generated by

shear and tensile stresses associated with the divergent plate move-

ments. View northeast, this extension fracture is as wide as 10 m and

®lled with groundwater to a depth of tens of metres (cf. Gudmunds-

son 1987b).
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dimension L is greater than its dip dimension R, the
controlling dimension is R and, from Eq. (9), the frac-
ture aperture is given by:

DuI � 4DpVR
E

: �16�

Eqs. (15) and (16) show that ¯uid overpressure can
have great e�ects on the aperture of ¯uid-conducting
fractures.

To see the e�ects that changes in fracture aperture
have on ¯uid transmission through fractures, consider
®rst the hydraulic conductivity of a single crack, Kc,
which is given by:

Kc � rgDu2
I

12m
�17�

where r is the density of the ¯uid, g is the acceleration
due to gravity, DuI is the crack aperture and m is the
dynamic (or absolute) viscosity of the ¯uid. Similarly,
the volumetric rate of ¯uid Qc through a crack of unit
controlling (smaller) dimension is:

Qc � rgDu3I
12m

rh �18�

where rh is the hydraulic gradient. Eqs. (17) and (18)
indicate how sensitive the hydraulic conductivity and
associated volumetric ¯ow rates are to changes in frac-
ture aperture. These equations are for individual frac-
tures, but are easily extended to fracture sets (Bear,
1993; Lee and Farmer, 1993) such as those in the
damage zones of major fault zones. Thus, when subject

to ¯uid overpressure, the fault-zone hydraulic conduc-
tivity and transmissivity can greatly increase.

In order to evaluate the e�ects of aperture range on
¯uid transport in rock fractures, we shall consider the
results of the measurements of several hundred min-
eral-®lled veins of a major fault zone in North Iceland
(Gudmundsson, 1995, 1999). The veins are mostly
®lled with quartz, chalcedony and zeolites and occur in
sets within the damage zone of the fault zone. Some
veins occupy shear fractures, but the great majority
are pure extension (mode I) cracks (Gudmundsson,
1999). Because the veins occur in sets, many of them
are restricted, that is, end in other veins, rock disconti-
nuities or free surfaces.

Several hundred non-restrictive (as seen in the out-
crop), extensional mineral veins were selected for
studying the width/length ratios (Gudmundsson, 1999).
The results (Fig. 10) show a large scatter in the data,
similar to the scatter in Figs. 3 and 4. Thus, the width
of a mineral vein of a given length can vary by a fac-
tor of up to 20 or more, although most commonly the
variation is by a factor of roughly 2±10.

If the width or aperture of a mineral vein in a set
can vary by a factor of 2, it follows from Eq. (18)
that, other things being equal, the volumetric rate of
¯ow through fractures of that given length (smaller
dimension) can vary by a factor of 8. If a fracture of a
given length exceeds the average width (aperture) of
fractures of that length by a factor of 10, the volu-
metric ¯ow through that single fracture, other things
being equal, would be as much as 1000 times that
through the fracture of average width. In other words,

Fig. 10. Length±width (thickness) relationship for 384 mineral-®lled veins in the Tjornes Fracture Zone in North Iceland (cf. Gudmundsson,

1995, 1999). All the veins are measured in roughly 12 Ma basaltic lava ¯ows with similar mechanical properties. The regression line indicates

that the general length/width ratio is around 400. The linear correlation coe�cient R=0.81. There is large scatter in the data: for many veins of

the same length, the width varies by a factor of 2±10, and, for some of the smallest veins, the variation is by up to a factor of 20.
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a single wide fracture in a set containing hundreds of
fractures can largely control the ¯uid ¯ow through
that set. It follows that any realistic model on ¯uid
¯ow in rock fractures must take into account the
e�ects of controlling dimensions on fracture apertures
and the way these parameters change during the evol-
ution of the ¯uid-transporting fracture system.

6. Discussion

Most fractures grow by segment linkage (e.g. Gud-
mundsson, 1987a,b; Willemse et al., 1996), which has
also been suggested as a possible explanation for scat-
ter in the length-displacement data (Cartwright et al.,
1995). The results presented in this paper indicate that
di�erent controlling dimensions of fractures may lar-
gely explain this scatter. Furthermore, when a fracture
grows by segment linkage its controlling dimension is
likely to change. For example, a normal fault may
start its growth when a set of extension fractures link
up, as is commonly observed in the ®eld (Pollard et
al., 1982; Gudmundsson, 1987a,b; Willemse et al.,
1996). The controlling dimension of each of the exten-
sion fractures may be the strike dimension, but when
they link up during their lateral propagation, the dip
dimension may become the smaller, and thus the con-
trolling, dimension. If this normal fault eventually pro-
pagates through the whole crust, which in a rift zone
is underlain by magma (Gudmundsson, 1988), the
strike dimension again becomes the controlling dimen-
sion.

Similar changes in controlling dimensions may occur
for fractures at any scale, particularly those that are
growing in a layered rock (Figs. 6 and 7). Field
measurements (Amadei and Stephansson, 1997) and
theoretical studies (Bonafede and Rivalta, 1999) indi-
cate that abrupt changes in the stress ®eld controlling
the fracture growth are common at contacts and other
discontinuities in a strati®ed rock. Fractures that meet
with these discontinuities may act as through cracks
while stopping at the contacts, but later when they
have propagated through the contacts, they act as
part-through cracks.

Changes in controlling dimensions of fractures con-
stituting ¯uid-transporting networks (e.g. Sibson, 1996)
may have great temporal e�ects on the overall ¯uid
transmissivity of the network. Fractures of a given
length, and constituting networks located in a single
tectonic regime with essentially uniform mechanical
host-rock properties, commonly have apertures that
di�er in size by a factor of up to 10. Such a large scat-
ter is likely to be partly due to the fracture apertures
being related to di�erent controlling dimensions. For
some fractures in the network, the aperture is a func-
tion of the strike dimension, whereas for others the

aperture is a function of the dip dimension. During the
evolution of the network, the controlling dimensions
may alternate between the dip and the strike dimen-
sions.

While moderate to large faults are commonly
slightly elongate in the strike dimension (Fig. 8), many
rock fractures may be elongate in the dip dimension.
For example, small extension fractures in basaltic lava
¯ow (Fig. 6) propagate through linking up of vertical
columnar joints through horizontal contacts between
¯ow units (Fig. 7; cf. Gudmundsson, 1992). Such frac-
tures are likely to change their controlling dimensions
many times during their evolution into large normal
faults (Figs. 1±4). The dimensions of a given rock frac-
ture depend on variations in tensile strength, Young's
modulus and stresses in the rock hosting the fracture
and, for hydrofractures (Fig. 10), on ¯uid pressure gra-
dients in the fracture. The resulting dip dimension may
thus be greater than the strike dimension.

It is well known that ¯uid ¯ow in fractured media
di�ers from that in porous media in that the hydrogeo-
logical properties of the fractured media are much
more sensitive than those of the porous media to
changes in the associated stress ®eld. This di�erence
has mainly been attributed to the apertures of the frac-
tures changing much more easily when the stress ®eld
changes than the near-spherical voids of the porous
media. The considerations in this paper, however, indi-
cate that not only are the fractures, and associated per-
meabilities, sensitive to changes in the stress ®eld, but
also to changes in the controlling dimensions of the
fractures. It follows that realistic models applied to
¯uid ¯ow in rock fractures should take into account
the controlling dimensions and the way they may
change during the evolution of the fracture system.
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